
Techniques in OS-Fingerprinting

an exposition by

nostromo

Hagenberg, September 2005

Contents

Abstract iii

Preface iv

1 Introduction 1

1.1 What is OS fingerprinting? 1
1.2 Why OS fingerprinting? . 1

2 Techniques of OS fingerprinting 2

2.1 Non-automated techniques . 2
2.1.1 Direct Banner Grabbing 2
2.1.2 Indirect Banner Grabbing 3

2.2 TCP and ICMP fingerprinting 4
2.2.1 The TCP packet header 4
2.2.2 The ICMP packet header 5

2.3 Automated techniques . 5
2.3.1 nmap . 6
2.3.2 Xprobe2 . 8

3 Defeating OS fingerprinting 12

3.1 Linux Kernel Patches . 12
3.1.1 IP Personality . 12
3.1.2 Stealth Patch . 13
3.1.3 Fingerprint Fucker . 13
3.1.4 iplog . 13

3.2 FreeBSD, OpenBSD and NetBSD 14
3.2.1 blackhole . 14
3.2.2 Fingerprint Fucker . 15
3.2.3 OpenBSD packet filter (pf) 15
3.2.4 FreeBSD TCP DROP SYNFIN 16

A ICMP Headers 17

A.1 Echo Reply . 17
A.2 Timestamp Request . 17

i

CONTENTS ii

A.3 Address Mask Request . 18
A.4 Information Request . 18
A.5 Port Unreachable . 18

Bibliography 18

Abstract

This exposition will give a little insight into the working principles of TCP
operating system (OS) fingerprinting applications. In chapter 2 the basics of
TCP and ICMP fingerprinting mechanisms, as well as more simple ways to
get the operating system an aimed device is running on, are described. These
include direct and indirect banner grabbing. Also specialised applications
such as nmap and Xprobe2 are described in this chapter. Chapter 3 will point
out some ways to defeat fingerprinting probes on UNIX-based and Linux

operating systems.

iii

Preface

Acknowledgements and Trademarks

UNIX is a registered trademark, licensed exclusively through The Open Group.
Linux is a registered trademark of Linus Torvalds.
Windows is a registered trademark of Microsoft Corporation.
Nmap is a registered trademark of Insecure.Com LLC.
Other terms, which are trademarks, are the property of their respective own-
ers.

In this document the term ”UNIX” is used as a generic description for
UNIX- like operating systems of different manufacturers.

iv

Chapter 1

Introduction

1.1 What is OS fingerprinting?

OS fingerprinting describes the method of utilising gathered information of
a target host to find out what operating system the machine is running on.

Or, as wikipedia1 would describe it:

TCP/IP stack fingerprinting (or OS fingerprinting) is the pro-
cess in computing of determining the identity of a remote host’s
operating system by analyzing packets from that host.

1.2 Why OS fingerprinting?

When doing penetration testing today the tester starts to gather as much
information of the target machine as possible. One major key information
is the operating system the target is running on. As long as this informa-
tion is not revealed, the attacker is limited in the variety of attacks, probes
and exploits. Therefore the focus on initial information gathering is put on
finding out the operating system.

There are several approaches to finding out the running operating system
of an unknown host without having an account or any other way of logging
in directly on this machine. Their range is from simple banner grabbing to
highly sophisticated TCP- and/or ICMP-header analyses. This exposition
will give a rough overview on some of them with a little in-depth dissection
and description.

1http://en.wikipedia.org/wiki/OS fingerprinting

1

Chapter 2

Techniques of OS
fingerprinting

2.1 Non-automated techniques

2.1.1 Direct Banner Grabbing

Though banner grabbing is the most basic and easiest form of OS finger-
printing, it is often quite efficient and reliable. The approach is simple and
doesn’t require any special tools most of the time (cf. [Fyo98]).

Here is an example using telnet, a standard tool that can be found on all
Microsoft Windows and UNIX-like platforms:

root@nostromo# telnet mail.fh-hagenberg.at 143

Trying 193.170.124.96...

Connected to postman.fh-hagenberg.at.

Escape character is '^]'.

* OK Microsoft Exchange Server 2003 IMAP4rev1 server version

6.5.7226.0 (postman.fhs-hagenberg.ac.at) ready.

�

When analyising the output in bits and pieces a lot of information is revealed
from the single line that was returned by the server.� Microsoft Exchange Server 2003: It is a Microsoft Exchange Server

2003.� IMAP4rev1 server: It runs IMAP4.� version 6.5.7226.0: It is version 6.5.7226.0.

Now it’s up to an attacker to find an exploit for this specific version of the
Microsoft Exchange Server 2003.

2

CHAPTER 2. TECHNIQUES OF OS FINGERPRINTING 3

Another example will be given:

root@nostromo# telnet nostromo.joeh.org 80

Trying 193.170.32.26...

[...]

HEAD / HTTP/1.0

[...]

Server: Microsoft-IIS/8.1

[...]

The analysis would reveal:� Server: Microsoft-IIS/8.1: It is a Microsoft IIS, version 8.1.

A search on Google1 would show that there is no IIS of version 8.1. So here
it is obvious that the banner has been faked in some way.
Faking is often linked to the phrase ”Security by Obscurity”. Throughout
this exposition it will be shown that banner string faking is not a way of
keeping someone who is familiar with OS fingerprinting techniques, to get
a reliable result. OS fingerprinting in the majority of cases is always a
combination of the output from as many probes/tools as possible, so faking
just one banner output will not be enough.

2.1.2 Indirect Banner Grabbing

Banners are often revealed in an indirect way too. For example email head-
ers often contain the version string of the client that is used by a user –
sometimes including the operating system version. Sometimes even the fire-
wall that an email passed through adds its banner to the header of the email.
Same with servers that forwarded the message, and the local delivery agent
(if present). Information that is often revealed by headers is an involved
virus scanner too.
Another example would be the SYST command in FTP. Doing a quick test on
ftp://ftp.microsoft.com and ftp://ftp.debian.org returned ”215 Windows NT”
and ”215 UNIX Type: L8”. Though these banners do not reveal the exact
underlying operating system it can give a first hint on the OS family that is
used (like Microsoft Windows, Linux, a UNIX-derivat, Apple Macintosh,
etc.) [Fyo98].
One more way to get information is analyzing offered files, like trying to
download /bin/ls or /bin/gunzip from a ftp server:

1http://www.google.com

CHAPTER 2. TECHNIQUES OF OS FINGERPRINTING 4

root@nostromo# wget ftp://ftp3.ru.freebsd.org/bin/gunzip

[...]

18:23:19 (104.25 KB/s) - `gunzip' saved [46836]

root@nostromo# file gunzip

gunzip: ELF 32-bit LSB executable, Intel 80386, version 1

(FreeBSD), for FreeBSD 5.3, dynamically linked (uses

shared libs)

�

�

2.2 TCP and ICMP fingerprinting

2.2.1 The TCP packet header

In order to understand the technique of TCP fingerprinting (which nmap

heavily relies on – see Chapter 2.3.1, page 6) a little insight into a TCP
header is necessary. Therefore a TCP header will be shown here:

4 8 12 16 20 24 28 32

Sequence Number

Acknowledgement Number

Offset Reserved Flags Window Size

Checksum Urgent Pointer

Options Padding

Data

Figure 2.1: TCP header fields [Hun92]

Especially the flags header field is of special interest for the fingerprinting
application. The six flags in detail are:

”URG” (1 bit): Urgent pointer field significant.
”ACK” (1 bit): Acknowledgment field significant.
”PSH” (1 bit): Push Function.
”RST” (1 bit): Reset the connection.
”SYN” (1 bit): Synchronize sequence numbers.
”FIN” (1 bit): No more data from sender.

[JBB92]

CHAPTER 2. TECHNIQUES OF OS FINGERPRINTING 5

These flags are essential for OS fingerprinting since each operating sys-
tem reacts differently to normal and special crafted TCP packets sent to its
network stack. Especially tools as described in chapter 2.3 make heavy use
of those flags.

2.2.2 The ICMP packet header

In order to understand the working principles of ICMP fingerprinting and
Xprobe2 (described in chapter 2.3.2, page 8) a little insight into an ICMP
header is necessary. Therefore a prototype ICMP header will be shown here:

4 8 12 16 20 24 28 32

Type Code Checksum

Data

Figure 2.2: ICMP header fields [Hun92]

The Type field specifies the format of the ICMP message. Most common
types are:
- 3: Destination Unreachable,
- 4: Source Quench,
- 5: Redirect Message,
- 8 and 0: Echo Request and Echo Reply,
- 11: Time Exceeded,
- 12: Parameter Problem,
- 13 and 14: Timestamp Request and Timestamp Reply,
- 15 and 16: Information Request and Information Reply.

The header looks different for each request and reply packet though. The
type field specific headers will be shortly described in appendix ??, page ??

and shortly described in chapter 2.3.2, page 8.

2.3 Automated techniques

Of course all these methods described in chapter 2.1.1 can be automized.
Two applications that have gained fame on the field of OS fingerprinting
are nmap and Xprobe2. This exposition will take a closer look at nmap and
will give a little insight into the way fingerprinting is done. Furthermore a
quick overview of how Xprobe2 does OS detection will be given too.

CHAPTER 2. TECHNIQUES OF OS FINGERPRINTING 6

2.3.1 nmap

nmap was written by Fyodor2. It can be obtained from
http://www.insecure.org/nmap/ and it was published under the terms of
the GNU General Public License3 as published by the Free Software Foun-
dation.
nmap begins it’s OS detection by sending an ICMP ping request to the tar-
get, then it connects to port 80 (HTTP) to see if the target is responding
and running at all4. Then nmap does the actual portscan, searching for at
least one open5 and one closed6 port. To gain exact information about the
underlying OS nmap sends several special crafted TCP packets – at least
four packets are sent to an opened port, and three to a closed port – and
records the replies. It then makes a lookup in the OS-detection fingerprint
file.
The first sent packet contains only the SYN flag set. This is typically done
when initiating a TCP connection. The second packet has no flag set at
all, which is usually refered to as a null scan, whilst for the third scan the
URG, PSH, SYN and FIN flag are set. This combination of flags is not
illegal though very unusual (RFC-1025 calls this sort of crafted packet a
”kamikaze”, ”nastygram”, ”christmas tree” or ”lamp test” packet [Pos87]).
Furthermore several options are set in the TCP packet header (see Table
2.1, page 4) that again are interpreted differently by operating systems.
So all these probes are evaluated and looked up in the nmaps OS-fingerprints
file. This file (”nmap-os-fingerprints”) contains a pattern that can eas-
ily be extended for new operating systems since they all are based on one
template. Here is an example for ”FreeBSD 5.3-RELEASE #0”:

FreeBSD 5.2-CURRENT (Jan 2004) on x861

FreeBSD 5.2.1-RELEASE i3862

FreeBSD 5.3-RELEASE #03

Fingerprint FreeBSD 5.2 - 5.3
4

Class FreeBSD | FreeBSD | 5.X | general purpose
5

TSeq(Class=TR%gcd=<6%IPID=I%TS=100HZ)
6

T1(DF=Y%W=FFFF%ACK=S++%Flags=AS%Ops=MNWNNT)
7

T2(Resp=N)
8

T3(Resp=Y%DF=Y%W=FFFF%ACK=S++%Flags=AS%Ops=MNWNNT)
9

T4(DF=Y%W=0%ACK=O%Flags=R%Ops=)
10

T5(DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
11

2”Fyodor” actually is the unknown hackers favourite author called Fyodor Dostoyevsky.
He (or she) decided to stay anonymous and therefore uses this handle [Fyo05].

3http://www.gnu.org/
4Today it is common practice to drop ICMP requests, so it looks like the host is down.

As shown in chapter 2.3.2, page 8 this makes sense and can improve security
5”open” means an application is listening and awaiting connections.
6”closed” means no application is listening on this specific port.

CHAPTER 2. TECHNIQUES OF OS FINGERPRINTING 7

T6(DF=Y%W=0%ACK=O%Flags=R%Ops=)
12

T7(DF=Y%W=0%ACK=S%Flags=AR%Ops=)
13

PU(DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=0%14

ULEN=134%DAT=E)15

�

� Line 1 to 3: are comments, describing what is covered by this fingerprint.� Line 4: specifies again what this fingerprint covers.� Line 5: gives another rough overview of what is scanned (in this case it is
FreeBSD, but it could as well be a Zyxel, Cisco, Netgear, etc. device).� Line 6: gives the predictability of the used TCP initial sequence num-
ber (ISN7). Further details provided are: Class=TR describes the ISN
as truly random (”TR”). gcd=<6 means the greatest common denom-
inator (”gcd”) is less than 6. ”%” divides sub-tests (”&” would be a
logical AND, ”|” a logical OR operation). IPID=I describes the IPID8

to be increased by a standard increment (”I”) with each sent packet.
TS=100HZ means the timestamp (”TS”) increases by 100 every second.� Line 7: specifies test 1 (”T1”) more in detail. DF=Y specifies the status of
the Don’t Fragment (”DF”) flag (it is either ”N” (No), or ”Y” (Yes)). W
specifies the window size (”W”) received from the reply. ACK=S++ refers
to the expected ACK value, which was the initial sequence’s ACK
number plus one (”S++”), other possible return values could be S which
indicates that the number returned was the sequence number sent, or O
which indicates some other value was returned.. Flags=AS displays the
TCP flags that are enabled in the reply, namely the Acknowledgment
(”A”) and the Synchronize (”S”) flag, other values could be R which
means the Reset flag was set. Ops=MNWNNT displays the TCP options
that are enabled in the reply, namely MNWNNT (”M” is Maximum
Segment Size, ”N” is No Op, ”W” is Window Scale, ”T” is Timestamp.� Line 8: specifies test 2 (”T2”) more in detail. Resp=N means no response
to the specified probe was received from the target host.� Line 9 to 13: specifies test 9 (”T2”) through test 13 (”T13”) more in detail.
For the rest of the options, see previous lines.� Line 14/15: specifies the Port Unreachable test (”PU”) more in detail.
For most of the values see specifications for Line 6 to 13. TOS=0 dis-
plays the type of service (”TOS”) as a hexadecimal value. IPLEN=38

7The principle here is to find patterns in the initial sequence numbers chosen by TCP
implementations when responding to a connection request.

8The IPID attribute refers to the IP identification bytes in the IP header.

CHAPTER 2. TECHNIQUES OF OS FINGERPRINTING 8

displays the IP datagram total Length (”IPLEN”) in bytes from the
response packet’s IP header as a hexadecimal value. RIPTL=148 shows
the Repeated back IP datagram Total Length (RIPTL), which is the IP
datagram total length from the echoed IP header – this value is refer-
enced from the IPLEN attribute. RID=E displays the IP identification
bytes in the reply (RID) that are identical to the original frame (”E”).
RIPCK=E means a comparison of the Returned IP Checksum (RIPCK)
to the checksum of the sent packet did equal (”E”). UCK=0 means that
the UDP Checksum (UCK) of the returned packet did equal (”E”) to
the one in the sent probe. ULEN=134 means that the UDP Length
(ULEN) in the response frame matches the sent value (”134”) from
the original frame. DAT=E displays if the Data (DAT) in the returned
packet did equal (”E”) to the original sent frame.

Here is the example according to above in practice:

root@nostromo# nmap -F -sT -O 193.170.32.26

[...]

Interesting ports on nostromo.joeh.org (193.170.32.26):

[...]

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

113/tcp open auth

443/tcp open https

706/tcp open silc

Device type: general purpose

Running: FreeBSD 5.X|6.X

OS details: FreeBSD 5.2 - 5.4, FreeBSD 5.2-CURRENT - 5.3

(x86) with pf scrub all, FreeBSD 5.2.1-RELEASE or

6.0-CURRENT

[...]

�

�

2.3.2 Xprobe2

Xprobe2 was written by Fyodor Yarochkin9, Ofir Arkin and Meder Ky-
dyraliev. It can be optained from http://xprobe.sourceforge.net/ and it was
published under the terms of the GNU General Public License as published
by the Free Software Foundation.
Unlike nmap, Xprobe2 does not work with TCP packets, but with ICMP
packets to collect the data needed for OS fingerprinting. It makes use of
modules so it is extendable by developers and users at any time and can

9This Fyodor is not the same as the Fyodor from nmap (see 2.3.1, and
http://www.snort.org/docs/faq/1Q05/node3.html

CHAPTER 2. TECHNIQUES OF OS FINGERPRINTING 9

easily adopt new probes. After compiling the source code, provided at
http://xprobe.sourceforge.net/, Xprobe2 comes with only three files: the
binary itself, a configuration file and a manual page (man). Besides the two
”reachabilty” modules provided, only the first five of nine modules, named A
to G plus two more modules that deal with TCP and UDP, for OS detection
are of major interest here now. Their input is described in the configuration
file (”xprobe2.conf”) and a closer look at the section for ”FreeBSD 5.3-
RELEASE #0” from this file will be taken here:

[...]1

OS\ID = "FreeBSD 5.3"2

[...]3

#Module A [ICMP ECHO Probe]4

icmp_echo_reply = y
5

icmp_echo_code = !0
6

icmp_echo_ip_id = !0
7

icmp_echo_tos_bits = !0
8

icmp_echo_df_bit = 1
9

icmp_echo_reply_ttl = <64
10 � Line 2 names the operating system that will be described.� Line 4 describes the ICMP type used for this probe. For more information

on this ICMP types header, please refer to appendix ??, page ??.� icmp echo reply = y in line 5 means that there was an ICMP echo re-
quest reply.� icmp echo code = !0 in line 6 means that the code in the ICMP header
does not equal 0.� In line 7, icmp echo ip id = !0 means that the identification number in
the IP header does not equal 0.� In line 8, icmp echo tos bits = !0 means that the type of service (TOS)
or Differentiated Services Field in the IP header does not equal 0.� icmp echo df bit = 1 in line 9 means that the don’t fragment (DF) flag
in the IP header is enabled.� icmp echo reply ttl = <255 in line 10 means that the time to live (TTL)
in the IP header is less than or equal to 255.

#Module B [ICMP Timestamp Probe]
11

icmp_timestamp_reply = y
12

icmp_timestamp_reply_ttl = <64
13

icmp_timestamp_reply_ip_id = !0
14

CHAPTER 2. TECHNIQUES OF OS FINGERPRINTING 10

These lines represent the results from the ICMP timestamp test. For more
information on this ICMP types header, please refer to appendix A.2, page
17.� In line 12 icmp timestamp reply = y means that an ICMP timestamp

reply message should be received from the target machine.� In line 13 icmp timestamp reply ttl = <255 means that time to live in
the IP header is less than or equal to 255.� icmp timestamp reply ip id = !0 in line 14 means that the identifica-
tion number in the IP header does not equal 0.

#Module C [ICMP Address Mask Request Probe]
15

icmp_addrmask_reply = n
16

icmp_addrmask_reply_ttl = <64
17

icmp_addrmask_reply_ip_id = !0
18

These lines show the results from the ICMP Address Mask Request test.
For more information on this ICMP types header, please refer to appendix
??, page ??.� icmp addrmask reply = n in line 16 means that no reply should be re-

ceived from the target device.� Line 17 to 18 are ignored, since no reply is received from the target host
for this probe type.

#Module D [ICMP Information Request Probe]
19

icmp_info_reply = n
20

icmp_info_reply_ttl = <64
21

icmp_info_reply_ip_id = !0
22

These lines show the results from the ICMP Information Request test. For
more information on this ICMP types header, please refer to appendix A.4,
page 18. Their meaning aligns with the parameters from Module C.

#Module E [UDP -> ICMP Unreachable probe]
23

#IP_Header_of_the_UDP_Port_Unreachable_error_message
24

icmp_unreach_reply = y
25

icmp_unreach_echoed_dtsize = 8
26

icmp_unreach_reply_ttl = <64
27

icmp_unreach_precedence_bits = 0
28

icmp_unreach_df_bit = 1
29

icmp_unreach_ip_id = !0
30

CHAPTER 2. TECHNIQUES OF OS FINGERPRINTING 11

These lines show the results from the ICMP Port Unreachable test. For
more information on this ICMP types header, please refer to appendix A.5,
page 18.� icmp unreach echoed dtsize = 8 in line 26 means that the amount of

data returned with the ICMP port unreachable error message from
the original UDP packet sent to the target machine is 8 bytes.� icmp unreach reply ttl = <255 in line 27 means that the time to live
in the IP header is less than or equal to 255.� In line 28 the icmp unreach precedence bits = 0 means that the Prece-
dence flag in the IP header is not enabled so it is equal to 0.� icmp unreach df bit = 0 in line 29 means that the Don’t Fragment flag
in the IP header was not enabled so it is equal to 0.� In line 30 icmp unreach ip id = !0 means that identification number in
the IP header does not equal to 0.

Here is the example according to above in practice:

root@nostromo# xprobe2 nostromo.joeh.org

Xprobe2 v.0.3 Copyright (c) 2002-2005 fyodor@o0o.nu,

ofir@sys-security.com, meder@o0o.nu

[+] Target is nostromo.joeh.org

[+] Loading modules.

[...]

[+] Host 193.170.32.26 Running OS: "FreeBSD 5.3" (Guess

probability: 81%)

[...]

�

�

For a more in-depth explanation on ICMP based OS fingerprinting and
Xprobe2 see the PDF document written by Ofir Arkin, the author of Xprobe2,
available on his homepage [Ark00].

Chapter 3

Defeating OS fingerprinting

In the effort to hide the running operating system of a device that is online,
several strategies have emerged. Depending on the operating system some
try to fool fingerprinting tools on kernel level, some on application level.
Here are some tools described.

3.1 Linux Kernel Patches

3.1.1 IP Personality

IP Personality1 is a patch for Linux kernels of version 2.4., that modifies
the characteristics of network traffic. Things that can be influenced are:
the TCP Initial Sequence Number, the TCP initial window size, the TCP
options (their types, values and order in the packet), the IP ID numbers
and answers to some pathological TCP packets. After applying this patch
iptables has new targets that can be used in the mangle table.
It was written by Gaël Roualland and Jean-Marc Saffroy in 2001.

Since this patch is not maintained anymore experiments have been done
with an old stable Debian release (”Woody”) with the included alternative
kernel, version 2.4.18 2.
Here is the OS fingerprint before applying the patch:

root@nosint# nmap -F -sT -O 192.168.0.2

[...]

Running: Linux Kernel 2.4.0 - 2.5.20

[...]

Here is the OS fingerprint after having applied the patch, and having chosen
to fake a MacOS-9 (”samples/macos9.conf”).

1available at http://ippersonality.sourceforge.net/
2see http://www.debian.org/releases/woody/i386/release-notes/ch-whats-new.html

for more details

12

CHAPTER 3. DEFEATING OS FINGERPRINTING 13

root@nosint# nmap -F -sT -O 192.168.0.2

[...]

Running: Apple Mac OS 9, or HP-UX 11.00

[...]

nmap really got confused and returned a wrong guess.

[Rou01]

3.1.2 Stealth Patch

Stealth Patch from Security Technologies 3 is another patch for Linux
kernels of version 2.2.19 through 2.2.22 and of version 2.4.19. When this
patch is applied all packets with both FIN and SYN flag set 4 are discarded.
Furthermore all packets with one specific reserved bit set 5 and all packets
that match nmaps probe 2 – this means the ACK, FIN, RST and SYN flags
are not set. Also packets with with the FIN, PUSH and URG flag set are
dropped, which would equal to nmaps probe 7.
Though the Stealth Patch does not enable a host to fein being some other
operating system, it still can confuse a fingerprinting application by droping
specific packets that are typical for a OS detector (like nmap in this special
case).
The downside of an unmodified Stealth Patch is, since only a few kernel
versions are supported, this behaviour could give away valuable info to a
fingerprinter again.
It was written by Sean Trifero & Derek Callaway in 2002.

3.1.3 Fingerprint Fucker

Fingerprint Fucker 6 is a kernel module available for Linux kernel of ver-
sion 2.2. that also tries to hide the original OS and act as a different one.
Per default it emulates the behaviour of a VAX device, but it can be con-
figured by parsing a nmap signature file and hands over the values to the
module. It mainly affects nmap tests one, two and seven.
It was written by |Cyrax| in 2000.

3.1.4 iplog

In contrary to the described methods up to now, iplog is not a kernel module
but a standalone application. Although mainly written for detecting port

3available at http://www.innu.org/∼sean/
4This kind of probe is often called ”QueSO probe”, from the fingerprinting application

QueSO", available at http://www.l0t3k.net/tools/FingerPrinting/queso-980922.tar.gz
5These packets are called ”bogus”
6http://www.s0ftpj.org/tools/fingfuck.tgz

CHAPTER 3. DEFEATING OS FINGERPRINTING 14

scans it includes the ability to try to fool nmap. It detects TCP Null and
FIN scans, UDP and ICMP ”smurf” attacks, bogus TCP flags, TCP SYN
and ”Xmas” scans.
When starting this application the results were pretty disappointing. Maybe
this application is far too old to still fool nmap, since it was written in 2001
and is not maintained anymore.
Here is the OS fingerprint before starting iplog:

root@nosint# nmap -F -sT -O 192.168.0.2

[...]

Running: Linux 2.4.X|2.5.X|2.6.X

OS details: Linux 2.5.25 - 2.6.8 or Gentoo 1.2 Linux 2.4.19

rc1-rc7

[...]

�

Here is the OS fingerprint after having started iplog:

root@nosint# nmap -F -sT -O 192.168.0.2

[...]

Running: Linux 2.4.X|2.5.X|2.6.X

OS details: Linux 2.5.25 - 2.6.8 or Gentoo 1.2 Linux 2.4.19

rc1-rc7, Linux 2.6.3 - 2.6.10

[...]

�
iplog did not really fool nmap, since only the string ”Linux 2.6.3 - 2.6.10”
was added. The operating system of the scanned host was a Debian Linux,
running a kernel version 2.6.12.
It was written by Ryan McCabe in 2001.

[McC01]

3.2 FreeBSD, OpenBSD and NetBSD

3.2.1 blackhole

blackhole is an implementation for the FreeBSD kernel. If enabled the host
does not return a RST segment if there is no socket accepting connections
on a specific port. Instead it simply droppes the incoming packet and no
RST segment is sent back. This makes the system look like a blackhole.
Here is the output of Xprobe2 (as already known from chapter 2.3.2, page
8, here in a shorter form) before enabling blackhole:

CHAPTER 3. DEFEATING OS FINGERPRINTING 15

[+] Target is nostromo.joeh.org

[+] Loading modules.

[...]

[+] Host 193.170.32.26 Running OS: "FreeBSD 5.3" (Guess

probability: 81%)

[...]

�

Here is the output of Xprobe2 after having enabled blackhole:

[+] Target is nostromo.joeh.org

[+] Loading modules.

[...]

[+] Host 193.170.32.26 Running OS: "Apple Mac OS X 10.3.7"

(Guess probability: 100%)

[...]

[+] Execution completed.

�

blackhole fooled Xprobe2 that good, it returned a 100% hit for the wrong
guess ”Apple Mac OS X 10.3.7”.
It was written by Geoffrey M. Rehmet in 1999.

[Reh99]

3.2.2 Fingerprint Fucker

This is another application called Fingerprint Fucker, but this time it is
for the FreeBSD operating system. It rewrites the TCP/IP stack and sends
reply packets with differente settings like a different window size or TTL. It
is available at http://packetstormsecurity.org/UNIX/misc/bsdfpf.tar.gz
It was written by cthulhu in 2001.

3.2.3 OpenBSD packet filter (pf)

OpenBSD’s built-in packet filter pf can also be configured to defeat OS fin-
gerprinting techniques. Parameters like the Don’t Fragment bit, the TTL,
the Maximum Segment Size (MSS), the IP-ID field, etc. In the pf.conf man
page 7 it is described as follows:

no-df
Clears the don’t-fragment bit from a matching ip packet.

min-ttl number
Enforces a minimum ttl for matching ip packets.

max-mss number
Enforces a maximum mss for matching tcp packets.

7http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf

CHAPTER 3. DEFEATING OS FINGERPRINTING 16

random-id
Replaces the IP identification field with random values to com-

pensate for predictable values generated by many hosts. This
option only applies to outgoing packets that are not fragmented
after the optional fragment reassembly.

3.2.4 FreeBSD TCP DROP SYNFIN

The FreeBSD kernel offered a special option, TCP DROP SYNFIN that
dropped all packets with the FIN and SYN flags activated. This would
prevent nmap test number 3 (see chapter 2.3.1 on page 6). Since there
were serious troubles with FreeBSD hosts running a kernel with this option
enabled and a webserver activated, it seems this option has been removed.
Here is the text from an old archived handbook8:

There are some other optional items that you can compile into
the kernel for some added security. These are not required in
order to get firewalling to work, but some more paranoid users
may want to use them.

options TCP DROP SYNFIN

This option ignores TCP packets with SYN and FIN. This pre-
vents tools like security/nmap from identifying the TCP/IP
stack of the machine, but breaks support for RFC1644 exten-
sions. This is not recommended if the machine will be running
a web server.

8http://www.freebsd.org/doc/en US.ISO8859-1/books/handbook/index.html

Appendix A

ICMP Headers

A.1 Echo Reply

4 8 12 16 20 24 28 32

Type Code Checksum

Identifier Sequence Number

Data

Figure A.1: ICMP header fields, type 0 [Hun92]

A.2 Timestamp Request

4 8 12 16 20 24 28 32

Type Code Checksum

Identifier Sequence Number

Originate Timestamp

Receive Timestamp

Transmit Timestamp

Figure A.2: ICMP header fields, Type 13 [Hun92]

17

APPENDIX A. ICMP HEADERS 18

A.3 Address Mask Request

4 8 12 16 20 24 28 32

Type Code Checksum

Identifier Sequence Number

Address Mask

Figure A.3: ICMP header fields, Type 17 [Hun92]

A.4 Information Request

4 8 12 16 20 24 28 32

Type Code Checksum

Identifier Sequence Number

Figure A.4: ICMP header fields, Type 15 [Hun92]

A.5 Port Unreachable

4 8 12 16 20 24 28 32

Type Code Checksum

Unused Next Hop MTU

IP header + the first 8 bytes of the original datagram’s data.

Figure A.5: ICMP header fields, Type 3 [Hun92]

Bibliography

[Ark00] Ofir Arkin. Icmp usage in scanning. URL, http://www.sys-security.
com/archive/papers/ICMP Scanning v2.0.pdf, September 2000.

[Fyo98] Fyodor <fyodor@insecure.org>. Remote os detection
via tcp/ip fingerprinting. URL, http://www.insecure.org/
nmap/nmap-fingerprinting-article.html, October 1998.

[Fyo05] Fyodor <fyodor@insecure.org>. Who is fyodor? URL, http://www.
insecure.org/myworld.html, April 2005.

[Hun92] Craig Hunt. TCP/IP Network Administration. O’Reilly, 1 edition,
August 1992.

[JBB92] Van Jacobson, Bob Braden, and Dave Borman. Rfc 1323 - tcp
extensions for high performance. URL, http://www.faqs.org/rfcs/
rfc1323.html, May 1992.

[McC01] Ryan McCabe. iplog 2.2.3. URL, http://ojnk.sourceforge.net/stuff/
iplog.readme, January 2001.

[Pos87] Jon Postel. Rfc 1025 - tcp and ip bake off. URL, http://www.faqs.
org/rfcs/rfc1025.html, September 1987.

[Reh99] Geoffrey Rehmet. Blackhole(4). URL, http://www.freebsd.org/cgi/
man.cgi?query=blackhole, August 1999.

[Rou01] Jean-Marc Roualland, Gaël Saffroy. Ip personality documenta-
tion. URL, http://ippersonality.sourceforge.net/doc/ippersonality-en.
txt, July 2001.

19

